High Speed IDE Flash Disk

**SI Series** 

**Product Specification** 

**V1.1** 



## **Contents:**

| 1. | Product Information                         | 1        |
|----|---------------------------------------------|----------|
| 2. | System Features                             | 1        |
| 3. | Product Specifications                      | 2        |
|    | <ul> <li>3.1 System Specification</li></ul> | 3<br>3   |
| 4. | Pin Descriptions                            |          |
| 5. | 4.1 Pin Layout                              | 5<br>6   |
| 6. | 5.1 DC Characters                           | 8        |
| 7. | 6.1 Command Support                         | 27<br>28 |
| 8. | 7.1 Master/Slave Setup Ordering Information |          |
| 9. | Product Number decoder                      | 32       |

### 1. Product Information

The IDE Flash Disk is solid-state design and IDE compatible. It is an ideal replacement for standard IDE hard disk. It's a solid-state design offers no seek errors even under extreme shock and vibration conditions. The IDE Flash Disk is extremely small and highly suitable for rugged environments, thus providing an excellent solution for mobile applications with space limitations. It is fully compatible with all consumer applications designed for data storage, allowing simple use for the end user. The IDE Flash Disk is O/S independent, thus offering an optimal solution for embedded systems operating in non-standard computing environments. It provides memory storage for mobile computing applications, consumer electronics and embedded systems.

The IDE Flash Disk is offering various capacities. It has low power consumption and can operate from a singleÁ5.0 Volt power supply. ÁThe Ásperating Ásemperature ÁgradeÁis standard operating temperature grade (0°C~+70°C) and wide operating temperature grade (-40°C~+85°C).

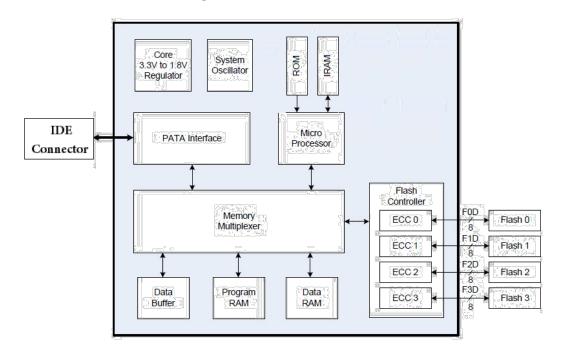
## 2. System Features

- Max Capacity supported: 128GByte.
- High reliability assured based on the internal ECC (Error Correcting Code) function.
- Reliable wear-leveling algorithm to ensure the best of flash endurance.
- Flexible file system structure.
- Automatic Recognition and Initialization of flash devices.
- Excellent performance supporting Ultra DMA Mode 6.
- Capacity supported: 1GB, 2GB, 4GB, 8GB, 16GB, 32GB, 64 GB and 128 GB (Unformat)



## 3. Product Specifications

## 3.1 System Specification


| Compatibility            | ATAPI-7 Specif                                     | ications                          |                           |  |  |  |  |  |
|--------------------------|----------------------------------------------------|-----------------------------------|---------------------------|--|--|--|--|--|
| Flash Technology         | ATAPI-7 Specifications NAND Type Flash Memory Base |                                   |                           |  |  |  |  |  |
| Form Factor              | 2.5inch                                            |                                   |                           |  |  |  |  |  |
| Connector Types          |                                                    | Standard 44pin male IDE connector |                           |  |  |  |  |  |
| Master/Slave             | Setup By Jump                                      |                                   |                           |  |  |  |  |  |
| System Performance       | Tottap 2) camp                                     |                                   |                           |  |  |  |  |  |
| Data Transfer Mode       | UDMA Mode 6                                        |                                   |                           |  |  |  |  |  |
| Data Francisi Mede       | SLC Type                                           | 00.041                            | ,                         |  |  |  |  |  |
| Seguential Bood          | Dual channel                                       | 60 Mbytes                         | sec Max.                  |  |  |  |  |  |
| Sequential Read          | SLC Type  Qual channel                             | 90 Mbytes                         | sec Max.                  |  |  |  |  |  |
| Sequential Write         | SLC Type  Dual channel                             | 50 Mbytes                         | sec Max.                  |  |  |  |  |  |
| Sequential Write         | SLC Type  Qual channel                             | 70 Mbytes                         | / sec Max.                |  |  |  |  |  |
| Average Access Time      | 0.5ms                                              |                                   |                           |  |  |  |  |  |
| Environmental Specificat | ion                                                |                                   |                           |  |  |  |  |  |
| Wide Temperature         | Operation                                          |                                   | -40°C ~ +85°C             |  |  |  |  |  |
| Wide remperature         | Non-operation                                      |                                   | -50°C ~ +95°C             |  |  |  |  |  |
| Vibration                | Operation max                                      |                                   | 20 G                      |  |  |  |  |  |
| Vibration                | Non-operation                                      |                                   | 20 G                      |  |  |  |  |  |
| Humidity                 | Operation max                                      |                                   | 5~95% non-condensing      |  |  |  |  |  |
| Trainialty               | Non-operation                                      | max                               | 5~95% non-condensing      |  |  |  |  |  |
| Shock                    | Operation max                                      |                                   | 1500 G                    |  |  |  |  |  |
| SHOCK                    | Non-operation                                      | max                               | 1500 G                    |  |  |  |  |  |
| Reliability              |                                                    |                                   |                           |  |  |  |  |  |
| MTBF                     | > 1,000,000 ho                                     |                                   |                           |  |  |  |  |  |
| Error Code Correction    | 15-bit BCH EC                                      | C engines                         |                           |  |  |  |  |  |
| Data Reliability         | < 1 non-recove                                     | rable error 10                    | ) <sup>14</sup> bits read |  |  |  |  |  |
| Data Retention           | 10 years                                           |                                   |                           |  |  |  |  |  |
| Power Consumption        |                                                    |                                   |                           |  |  |  |  |  |
| Power Voltage            | +5V ± 10%                                          |                                   |                           |  |  |  |  |  |
| Read Mode                | 100mA(Typ.)                                        | 100mA(Typ.)                       |                           |  |  |  |  |  |
| Write Mode               | 70mA(Typ.)                                         |                                   |                           |  |  |  |  |  |
| Standby Mode             | 1.8mA(Typ.)                                        |                                   |                           |  |  |  |  |  |

Notes: Ô[}•ˇ|ơỚÛƠnæ∤^•Á[¦ÁÛæa) åæbåÁV^{]^¦ææˇ¦^Á[[å^|ÞÁ



## CPI Technologies, Inc.

## 3.2 Block Diagram

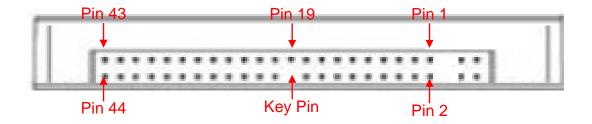


### 3.3 Dimension



2.5 inch Form Factor

## CPI Technologies, Inc.


## 3.4 Capacity Specification

The specific capacities for the various models and the default number of heads, sectors and cylinders.

| Card Size | Cylinders | Heads | Sectors | Total Sectors |
|-----------|-----------|-------|---------|---------------|
| 512 MB    | 985       | 16    | 63      | 992,880       |
| 1 GB      | 1,917     | 16    | 63      | 1,932,336     |
| 2 GB      | 3,835     | 16    | 63      | 3,865,680     |
| 4 GB      | 7,671     | 16    | 63      | 7,732,368     |
| 8 GB      | 15,343    | 16    | 63      | 15,465,744    |
| 16 GB     | 16,383    | 15    | 63      | 30,932,992    |
| 24 GB     | 16,383    | 15    | 63      | 46,399,488    |
| 32 GB     | 16,383    | 15    | 63      | 61,865,984    |
| 48 GB     | 16,383    | 15    | 63      | 92,798,976    |
| 64 GB     | 16,383    | 15    | 63      | 123,731,968   |
| 96 GB     | 16,383    | 15    | 63      | 185,597,952   |
| 128 GB    | 16,383    | 15    | 63      | 247,463,936   |

## 4. Pin Descriptions

## 4.1 Pin Layout





# Technologies CPI Technologies, Inc.

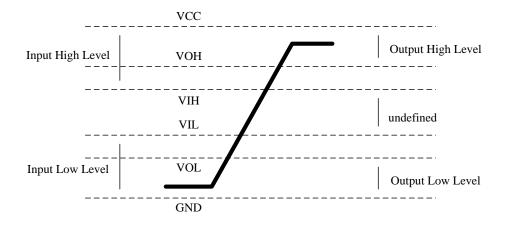
## 4.2 Pin Assignments

| Pin # | Pin Name               | Pin Type | Pin # | Pin Name | Pin Type |
|-------|------------------------|----------|-------|----------|----------|
| 1     | RESET-                 | I        | 2     | Ground   | Ground   |
| 3     | DD7                    | I/O      | 4     | DD8      | I/O      |
| 5     | DD6                    | I/O      | 6     | DD9      | I/O      |
| 7     | DD5                    | I/O      | 8     | DD10     | I/O      |
| 9     | DD4                    | I/O      | 10    | DD11     | I/O      |
| 11    | DD3                    | I/O      | 12    | DD12     | I/O      |
| 13    | DD2                    | I/O      | 14    | DD13     | I/O      |
| 15    | DD1                    | I/O      | 16    | DD14     | I/O      |
| 17    | DD0                    | I/O      | 18    | DD15     | I/O      |
| 19    | Ground                 | Ground   | 20    | Keypin   | Power    |
| 21    | DMARQ                  | 0        | 22    | Ground   | Ground   |
| 23    | DIOW-:STOP             | I        | 24    | Ground   | Ground   |
| 25    | DIOR-:HDMARDY-:HSTROBE | I        | 26    | Ground   | Ground   |
| 27    | IORDY:DDMARDY-:DSTROBE | 0        | 28    | NC       |          |
| 29    | DMACK-                 | I        | 30    | Ground   | Ground   |
| 31    | INTRQ                  | 0        | 32    | IOCS16-  | 0        |
| 33    | DA1                    | I        | 34    | PDIAG-   | I/O      |
| 35    | DA0                    | ľ        | 36    | DA2      | I        |
| 37    | CS0-                   | I        | 38    | CS1-     | 1        |
| 39    | DASP-                  | I/O      | 40    | Ground   | Ground   |
| 41    | VCC                    | Power    | 42    | VCC      | Power    |
| 43    | Ground                 | Ground   | 44    | Ground   | Ground   |



# Technologies CPI Technologies, Inc.

## 4.3 Signal Descriptions


| Signal Name | I/O | Pin                                | Description                                                                                                                                                                                                                               |
|-------------|-----|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESET-      | _   | 1                                  | This signal, referred to as hardware reset, shall be used by the host to reset the device.                                                                                                                                                |
| DD[15:0]    | I/O | 03-18                              | This is an 8- or 16-bit bi-directional data interface between the host and the device. The lower 8 bits are used for 8-bit register transfers. Data transfers are 16-bits wide except for CFA device that implement 8-bit data transfers. |
| INTRQ       | 0   | 31                                 | This signal is used by the selected device to interrupt the host system when interrupt pending is set.                                                                                                                                    |
| DA[2:0]     | I   | 33,35,36                           | This is the 3-bit binary coded address asserted by the host to access a register or data port in the device                                                                                                                               |
| CS0-,CS1-   | 1   | 37,38                              | These are the chip select signals from the host used to select the Command Block or Control Block registers. When DMACK- is asserted, CS0- and CS1- shall be negated and transfers shall be 16 bits wide.                                 |
| IORDY       |     |                                    | I/O channel ready                                                                                                                                                                                                                         |
| DDMARDY-    | 0   | 07                                 | Flow control signal for Ultra DMA data-out bursts.                                                                                                                                                                                        |
| DSTROBE     | 0   | 27                                 | The data-in strobe signal from the device for an Ultra DMA data-in burst.                                                                                                                                                                 |
| -IOCS16     | 0   | 32                                 | IOCS16- indicates to the host system that the 16-bit data port has been addressed and that the device is prepared to send or receive a 16-bit data word.                                                                                  |
| PDIAG-      | I/O | 34                                 | PDIAG- shall be asserted by Device 1 to indicate to Device 0 that Device 1 has completed diagnostics.                                                                                                                                     |
| DASP-       | I/O | 39                                 | This is a time-multiplexed signal that indicates that a device is active, or that Device 1 is present.                                                                                                                                    |
| DIOR-       |     |                                    | The strobe signal asserted by the host to read device registers or the Data port.                                                                                                                                                         |
| HDMARDY-    | I   | 25                                 | This signal is asserted by the host to indicate to the device that the host is ready to receive Ultra DMA data-in bursts.                                                                                                                 |
| HSTROBE     |     |                                    | The data-out strobe signal from the host for an Ultra DMA data-<br>Outburst.                                                                                                                                                              |
| DIOW-       | I   | 23                                 | The strobe signal asserted by the host to write device registers or the Data port.                                                                                                                                                        |
| STOP        |     |                                    | Stop Ultra DMA data burst.                                                                                                                                                                                                                |
| DMACK-      | -   | 29                                 | This signal shall be used by the host in response to DMARQ to initiate DMA transfers.                                                                                                                                                     |
| DMARQ       | 0   | 21                                 | This signal, used for DMA data transfers between host and device, shall be asserted by the device when the device is ready to transfer data to or from the host.                                                                          |
| Ground      | GND | 02,19,22,<br>24,26,30,<br>40,43,44 | Ground                                                                                                                                                                                                                                    |
| VCC         | VCC | 20,41,42                           | +5V DC Power                                                                                                                                                                                                                              |



## 5. Electrical Specifications

## 5.1 DC Characters

| Symbol                | Parameter                                        | Rating                        | Units |
|-----------------------|--------------------------------------------------|-------------------------------|-------|
| $V_{CC}$              | Power Supply                                     | -0.3 to 5.5                   | V     |
| $V_{IN}$              | Input Voltage                                    | -0.3 to V <sub>CC</sub> +0.3  | V     |
| $V_{OUT}$             | Output Voltage                                   | -0.3 to V <sub>CC</sub> +0.3  | V     |
| V <sub>CCQ</sub>      | Power supply for host I/O and embedded regulator | -0.6 to 5.5                   | V     |
| V <sub>IN_HOST</sub>  | Input voltage for host I/O                       | -0.3 to V <sub>CCQ</sub> +0.3 | V     |
| V <sub>OUT_HOST</sub> | Output voltage for host I/O                      | -0.3 to V <sub>CCQ</sub> +0.3 | V     |
| $T_{OPR\text{-}I}$    | Industrial temperature grade                     | -40° to +85°                  | °C    |
| $T_OPR$               | Commercial temperature grade                     | 0° to +70°                    | °C    |
| T <sub>STG</sub>      | Storage temperature                              | -55° to 150°                  | °C    |



| Symbol              | Parameter | MIN | TYP | MAX | Unit |
|---------------------|-----------|-----|-----|-----|------|
| Input low-voltage   | $V_{IL}$  |     |     | 0.8 | V    |
| Input high-voltage  | $V_{IH}$  | 2.0 |     | 5.0 | V    |
| Output low-voltage  | $V_{OL}$  | 0   |     | 0.4 | V    |
| Output high-voltage | $V_{OH}$  | 2.6 |     | 3.6 | V    |



### 5.2 AC Characters

#### True IDE PIO Mode Read/Write Timing

|                 | Item                                                                   | Mode 0 | Mode 1 | Mode 2 | Mode 3 | Mode 4 |
|-----------------|------------------------------------------------------------------------|--------|--------|--------|--------|--------|
| t <sub>0</sub>  | Cycle time (min) <sup>1</sup>                                          | 600    | 383    | 240    | 180    | 120    |
| t <sub>1</sub>  | Address Valid to HIOE/HIOW setup (min)                                 | 70     | 50     | 30     | 30     | 25     |
| t <sub>2</sub>  | HIOE/HIOW (min) <sup>1</sup>                                           | 165    | 125    | 100    | 80     | 70     |
| t <sub>2</sub>  | HIOE/HIOW (min) Register (8 bit) <sup>1</sup>                          | 290    | 290    | 290    | 80     | 70     |
| t <sub>2i</sub> | HIOE/HIOW recovery time (min) <sup>1</sup>                             | 1      | -      | 1      | 70     | 25     |
| t <sub>3</sub>  | HIOW data setup (min)                                                  | 60     | 45     | 30     | 30     | 20     |
| t <sub>4</sub>  | HIOW data hold (min)                                                   | 30     | 20     | 15     | 10     | 10     |
| t <sub>5</sub>  | HIOE data setup (min)                                                  | 50     | 35     | 20     | 20     | 20     |
| t <sub>6</sub>  | HIOE data hold (min)                                                   | 5      | 5      | 5      | 5      | 5      |
| t <sub>6Z</sub> | HIOE data tristate (max) <sup>2</sup>                                  | 30     | 30     | 30     | 30     | 30     |
| t <sub>7</sub>  | Address valid to IOCS16 assertion (max) <sup>4</sup>                   | 90     | 50     | 40     | n/a    | n/a    |
| t <sub>8</sub>  | Address valid to IOCS16 released (max) <sup>4</sup>                    | 60     | 45     | 30     | n/a    | n/a    |
| t <sub>9</sub>  | HIOE/HIOW to address valid hold                                        | 20     | 15     | 10     | 10     | 10     |
| t <sub>RD</sub> | Read Data Valid to IORDY active (min), if IORDY initially low after tA | 0      | 0      | 0      | 0      | 0      |
| t <sub>A</sub>  | IORDY Setup time <sup>3</sup>                                          | 35     | 35     | 35     | 35     | 35     |
| t <sub>B</sub>  | IORDY Pulse Width (max)                                                | 1250   | 1250   | 1250   | 1250   | 1250   |
| t <sub>C</sub>  | IORDY assertion to release (max)                                       | 5      | 5      | 5      | 5      | 5      |

Notes: All timings are in nanoseconds. The maximum load on IOCS16 is 1 LSTTL with a 50 pF (40pF below 120nsec Cycle Time) total load. All times are in nanoseconds. Minimum time from IORDY high to HIOE high is 0 nsec, but minimum HIOE width shall still be met.

- (1)  $t_0$  is the minimum total cycle time,  $t_2$  is the minimum command active time, and  $t_{2i}$  is the minimum command recovery time or command inactive time. The actual cycle time equals the sum of the actual command active time and the actual command inactive time. The three timing requirements of  $t_0$ ,  $t_2$ , and  $t_{2i}$  shall be met. The minimum total cycle time requirement is greater than the sum of  $t_2$  and  $t_{2i}$ . This means a host implementation can lengthen either or both  $t_2$  or  $t_{2i}$  to ensure that  $t_0$  is equal to or greater than the value reported in the device's identify device data.
- (2) This parameter specifies the time from the negation edge of HIOE to the time that the data bus is no longer driven by the device.
- (3) The delay from the activation of HIOE or HIOW until the state of IORDY is first sampled. If IORDY is inactive then the host shall wait until IORDY is active before the PIO cycle can be completed. If the device is not driving IORDY negated at t<sub>A</sub> after the activation of HIOE or HIOW, then t5 shall be met and t<sub>RD</sub> is not applicable. If the device is driving IORDY negated at the time t<sub>A</sub> after the activation of HIOE or HIOW, then t<sub>RD</sub> shall be met and t5 is not applicable.
- (4) t7 and t8 apply only to modes 0, 1 and 2. For other modes, this signal is not valid.
- (5) IORDY is not supported in this mode.



### CPI Technologies, Inc.

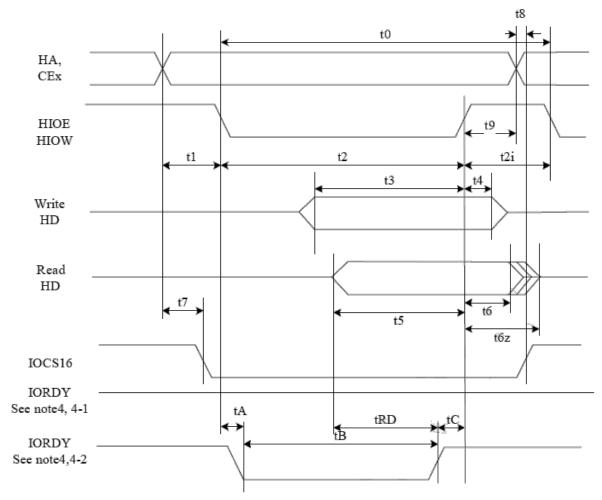



Figure 1 True IDE Mode Read/Write Timing Diagram

#### Notes:

- (1) Device address consists of CE0, CE1, and HA[2:0]
- (2) Data consists of HD[15:00] (16-bit) or HD[7:0] (8 bit)
- (3) IOCS16 is shown for PIO modes 0, 1 and 2. For other modes, this signal is ignored.
- (4) The negation of IORDY by the device is used to extend the PIO cycle. The determination of whether the cycle is to be extended is made by the host after t<sub>A</sub> from the assertion of HIOE or HIOW. The assertion and negation of IORDY is described in the following three cases:
- (4-1) Device never negates IORDY: No wait is generated.
- (4-2) Device drives IORDY low before  $t_A$ : wait generated. The cycle completes after IORDY is reasserted. For cycles where a wait is generated and HIOE is asserted, the device shall place read data on D15-D00 for  $t_{RD}$  before causing IORDY to be asserted.



#### True IDE Multiword DMA Mode Read/Write Timing

|             | Item                                 | Mode 0 | Mode 1 | Mode 2 | Mode 3 | Mode 4 | Note |
|-------------|--------------------------------------|--------|--------|--------|--------|--------|------|
| $t_{O}$     | Cycle time (min)                     | 480    | 150    | 120    | 100    | 80     | 1    |
| $t_{D}$     | HIOE / HIOW asserted width (min)     | 215    | 80     | 70     | 65     | 55     | 1    |
| $t_{\rm E}$ | HIOE data access (max)               | 150    | 60     | 50     | 50     | 45     |      |
| $t_{\rm F}$ | HIOE data hold (min)                 | 5      | 5      | 5      | 5      | 5      |      |
| $t_{G}$     | HIOE/HIOW data setup (min)           | 100    | 30     | 20     | 15     | 10     |      |
| $t_{\rm H}$ | HIOW data hold (min)                 | 20     | 15     | 10     | 5      | 5      |      |
| $t_{\rm I}$ | DMACK(HREG) to HIOE/HIOW setup (min) | 0      | 0      | 0      | 0      | 0      |      |
| $t_{\rm J}$ | HIOE / HIOW to -DMACK hold (min)     | 20     | 5      | 5      | 5      | 5      |      |
| $t_{KR}$    | HIOE negated width (min)             | 50     | 50     | 25     | 25     | 20     | 1    |
| $t_{KW}$    | HIOW negated width (min)             | 215    | 50     | 25     | 25     | 20     | 1    |
| $t_{LR}$    | HIOE to DMARQ delay (max)            | 120    | 40     | 35     | 35     | 35     |      |
| $t_{LW}$    | HIOW to DMARQ delay (max)            | 40     | 40     | 35     | 35     | 35     |      |
| $t_{\rm M}$ | CEx valid to HIOE / HIOW             | 50     | 30     | 25     | 10     | 5      |      |
| $t_N$       | CEx hold                             | 15     | 10     | 10     | 10     | 10     |      |

Notes:  $t_0$  is the minimum total cycle time and  $t_D$  is the minimum command active time, while  $t_{KR}$  and  $t_{KW}$  are the minimum command recovery time or command inactive time for input and output cycles respectively. The actual cycle time equals the sum of the actual command active time and the actual command inactive time. The three timing requirements of  $t_0$ ,  $t_D$ ,  $t_{KR}$ , and  $t_{KW}$  shall be met. The minimum total cycle time requirement is greater than the sum of  $t_D$  and  $t_{KR}$  or  $t_{KW}$  for input and output cycles respectively. This means a host implementation can lengthen either or both of  $t_D$  and either of  $t_{KR}$ , and  $t_{KW}$  as needed to ensure that  $t_0$  is equal to or greater than the value reported in the device's identify device data. A device implementation shall support any legal host implementation.



## CPI Technologies, Inc.

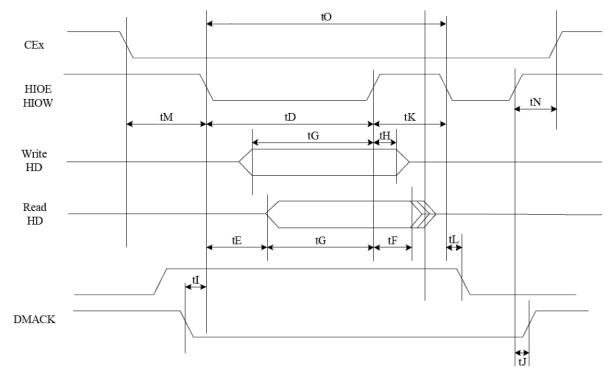



Figure 2 True IDE Multiword DMA Mode Read/Write Timing Diagram

#### Notes:

- (1) If the Card cannot sustain continuous, minimum cycle time DMA transfers, it may negate DMARQ within the time specified from the start of a DMA transfer cycle to suspend the DMA transfers in progress and reassert the signal at a later time to continue the DMA operation.
- (2) This signal may be negated by the host to suspend the DMA transfer in progress.



### Ultra DMA Mode Read/Write Timing

#### **Ultra DMA Signal**

| Signal     | Type   | TRUE IDE MODE UDMA                                        |
|------------|--------|-----------------------------------------------------------|
| DMARQ      | Output | DMARQ                                                     |
| HREG       | Input  | -DMACK                                                    |
| HIOW       | Input  | STOP <sup>1</sup>                                         |
| HIOE       | Input  | -HDMARDY <sup>1,2</sup><br>HSTROBE(W) <sup>1,3,4</sup>    |
| IORDY      | Output | -DDMARDY(W) <sup>1,3</sup><br>DSTROBE(R) <sup>1,2,4</sup> |
| HD[15:00]  | Bidir  | D[15:00]                                                  |
| HA[10:00]  | Input  | A[02:00] <sup>5</sup>                                     |
| CSEL       | Input  | -CSEL                                                     |
| HIRQ       | Output | INTRQ                                                     |
| CE1<br>CE2 | Input  | -CS0<br>-CS1                                              |

#### Notes:

- (1) The UDMA interpretation of this signal is valid only during an Ultra DMA data burst.
- (2) The UDMA interpretation of this signal is valid only during and Ultra DMA data burst during a DMA Read command.
- (3) The UDMA interpretation of this signal is valid only during an Ultra DMA data burst during a DMA Write command.
- (4) The HSTROBE and DSTROBE signals are active on both the rising and the falling edge.
- (5) Address lines 03 through 10 are not used in True IDE mode.



### **Ultra DMA Data Burst Timing Requirements**

| Name                 | UDMA<br>Mode 0 |     | UDMA<br>Mode 1 |     | UDMA<br>Mode |     | UDM/<br>Mode | 0   | UDM/<br>Mode |     | UDM/<br>Mode |     | UDM/<br>Mode | 0   | Measure<br>location |
|----------------------|----------------|-----|----------------|-----|--------------|-----|--------------|-----|--------------|-----|--------------|-----|--------------|-----|---------------------|
| ,                    | 'Min'          | Max | Min            | Max | Min          | Max | Min          | Max | Min          | Max | Min          | Max | Min          | Max | (see Note 2)        |
| t <sub>эсустур</sub> | 240            |     | 160            |     | 120          |     | 90           |     | 60           |     | 40           |     | 30 ·         |     | Sender              |
| tere.                | 112            |     | 73             |     | 54           |     | 39           |     | 25           |     | 16.8         |     | 13.0         |     | Note 3              |
| tzeve.               | 230            |     | 153            |     | 115          |     | 86           |     | 57           |     | 38           |     | 29.          |     | Sender              |
| tos                  | 15.0           |     | 10.0           |     | 70           |     | 7,0          |     | 5.0          |     | 4.0          |     | 2.6          |     | Recipient           |
| t <sub>он</sub>      | 5,0            |     | 5.0            |     | 5.0          |     | 5.0          |     | 5.0          |     | 4.6          |     | 3.5          |     | Recipient           |
| t <sub>ovs</sub>     | 70.0           |     | 48.0           |     | 31.0         |     | 20.0         |     | 6.7          |     | 4.8          |     | 4.0          |     | Sender              |
| ∜ <sub>DVH</sub>     | 6,2            |     | 6.2            |     | 6.2          |     | 6.2          |     | 6.2          |     | 4.8          |     | 4.0          |     | Sender              |
| tes                  | 15.0           |     | 1000           |     | 7.0          |     | 7.0          |     | 5.0          |     | 5:0          |     | 5.0          |     | Device              |
| t <sub>sH</sub>      | 5.0            |     | 5.0            |     | 5.0          |     | <b>5Ú</b> 0  |     | 5.0          |     | 5.0          |     | 5.0          |     | Device              |
| tove                 | 70.0           |     | 48.D           |     | 31.0         |     | 20.0         |     | 6.7          |     | 10.0         |     | 10.0         |     | Host                |
| t <sub>evr</sub>     | 6.2            |     | 6.2            |     | 6.2          |     | 6,2          |     | 6.2          |     | 10.0         |     | 10.0         |     | Host                |
| t <sub>zra</sub>     | (D)            |     | 0              |     | D):          |     | 10-          |     | 0            |     | 35           |     | 25           |     | Device              |
| tozra                | 70,0           |     | 48.0           |     | 31.0         |     | 20,0         |     | 6.7          |     | 25           |     | 17.5         |     | Sender              |
| t <sub>FB</sub>      |                | 230 |                | 200 |              | 170 |              | 130 |              | 120 |              | 90  |              | 80  | Device              |
| t <sub>id</sub>      | 0              | 150 | j0             | 150 | 0            | 150 | <b>(0</b> °  | 100 | 0            | 100 | 0            | 75  | 0            | 60  | Note 4              |
| t <sub>MM</sub>      | 20             |     | 20             |     | 20           |     | 20           |     | 20           |     | 20           |     | 20           |     | Host                |
| tur                  | ID)            |     | 8              |     | 0>           |     | 0            |     | 0            |     | Ø            |     | 0            |     | Host                |
| t <sub>AZ</sub>      |                | 10  |                | 10- |              | 10  |              | 10  |              | 10  |              | 10  |              | 110 | Note 5              |
| t <sub>zah</sub>     | .20            |     | 20             |     | 20           |     | 20           |     | 20           |     | 20           |     | 20           |     | Host                |
| t <sub>zad</sub>     | (0)            |     | įo             |     | (D)          |     | (I)>         |     | jo           |     | 0            |     | 0            |     | Device              |
| t <sub>ÉN9</sub>     | -20            | 70  | 20             | 70: | 20           | 70  | 20           | 55  | 20           | 55  | 20           | 50  | 20           | 50  | Host                |
| t <sub>RFS</sub>     |                | 75  |                | 70  |              | 60  |              | 60  |              | 60  |              | 50  |              | 50  | Sender              |
| t <sub>RP</sub>      | 160            |     | 125            |     | 100          |     | 100          |     | 100          |     | 85           |     | 85           |     | Recipient           |
| t <sub>ionovz</sub>  |                | 20  |                | 20  |              | 20  |              | 20  |              | 20  |              | 20  |              | 20  | Device              |
| tzioroy              | (D.            |     | 0              |     | <b>-</b> D   |     | 0            |     | Ò            | ^   | Ď            |     | 0            |     | Device              |
| t <sub>adk</sub>     | 20             |     | 20             |     | 20           |     | 20           |     | 20           |     | 20           |     | 20           |     | Host                |
| tss                  | ,50            |     | 50             |     | 50           |     | 50           |     | 50           |     | ,50          |     | 50           |     | Sender              |

#### NOTE:

- 1. All timings are in nanoseconds. All timing measurement switching points (low to high and high to low) are taken at 1.5 V
- 2. All signal transitions for a timing parameter are determined at the connector specified in the measurement location column. For Instance, for the case of tres, both STROBE and DMARDY transitions are determined by the sender's connector.
- 3. Parameter toyc is determined at the connector of the recipient farthest from the sender.
- 4. Parameter tLI is determined at the connector of a sender or recipient responding to an incoming transition from the recipient or sender, respectively. Both incoming signal and outgoing response are determined at the same connector.
- 5. Parameter tAZ is determined at the connector of a sender or recipient driving the bus, and must release the bus to allow for a bus turnaround.
- 6. Table 22 lists the AC Timing requirements: Ultra DMA AC Signal Requirements



### **Ultra DMA Data Burst Timing Descriptions**

| Name                 | Comment                                                                                                                                 | Notes |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|
| t <sub>2CYCTYP</sub> | Typical sustained average two cycle time                                                                                                |       |
| t <sub>CYC</sub>     | Cycle time allowing for asymmetry and clock variations (from STROBE edge to STROBE edge)                                                |       |
| t <sub>2CYC</sub>    | Two cycle time allowing for clock variations (from rising edge to next rising edge or from falling edge next falling edge of STROBE)    |       |
| t <sub>DS</sub>      | Data setup time at recipient (from data valid until STROBE edge)                                                                        | 2     |
| $t_{DH}$             | Data hold time at recipient (from STROBE edge until data may become invalid)                                                            | 2     |
| t <sub>DVS</sub>     | Data valid setup time at sender (from data valid until STROBE edge)                                                                     | 3     |
| t <sub>DVH</sub>     | Data valid hold time at sender (from STROBE edge until data may become invalid)                                                         | 3     |
| t <sub>CS</sub>      | CRC word setup time at device                                                                                                           | 2     |
| t <sub>CH</sub>      | CRC word hold time device                                                                                                               | 2     |
| t <sub>CVS</sub>     | CRC word valid setup time at host (from CRC valid until -DMACK negation)                                                                | 3     |
| t <sub>CVH</sub>     | CRC word valid hold time at sender (from -DMACK negation until CRC may become invalid)                                                  | 3     |
| t <sub>ZFS</sub>     | Time from STROBE output released-to-driving until the first transition of critical timing.                                              |       |
| t <sub>DZFS</sub>    | Time from data output released-to-driving until the first transition of critical timing.                                                |       |
| t <sub>FS</sub>      | First STROBE time (for device to first negate DSTROBE from STOP during a data in burst)                                                 |       |
| t∟ı                  | Limited interlock time                                                                                                                  | 1     |
| t <sub>MLI</sub>     | Interlock time with minimum                                                                                                             | 1     |
| t <sub>UI</sub>      | Unlimited interlock time                                                                                                                | 1     |
| $t_{AZ}$             | Maximum time allowed for output drivers to release (from asserted or negated)                                                           |       |
| $t_{ZAH}$            | Minimum delay time required for output                                                                                                  |       |
| $t_{ZAD}$            | drivers to assert or negate (from released)                                                                                             |       |
| t <sub>ENV</sub>     | Envelope time (from -DMACK to STOP and -HDMARDY during data in burst initiation and from DMACK to STOP during data outburst initiation) |       |
| t <sub>RFS</sub>     | Ready-to-final-STROBE time (no STROBE edges shall be sent this long after negation of -DMARDY)                                          |       |
| t <sub>RP</sub>      | Ready-to-pause time (that recipient shall wait to pause after negating -DMARDY)                                                         |       |
| t <sub>IORDYZ</sub>  | Maximum time before releasing IORDY                                                                                                     |       |
| t <sub>ZIORDY</sub>  | Minimum time before driving IORDY                                                                                                       | 4     |
| t <sub>ACK</sub>     | Setup and hold times for -DMACK (before assertion or negation)                                                                          |       |
| t <sub>SS</sub>      | Time from STROBE edge to negation of DMARQ or assertion of STOP (when sender terminates a burst)                                        |       |

#### Notes:

- (1) The parameters t<sub>UI</sub>, t<sub>MLI</sub> (in 5.2.3.9: Ultra DMA Data-In Burst Device Termination Timing and 5.2.3.10: Ultra DMA Data-In Burst Host Termination Timing), and t<sub>LI</sub> indicate sender-to-recipient or recipient-to-sender interlocks, i.e., one agent (either sender or recipient) is waiting for the other agent to respond with a signal before proceeding. t<sub>UI</sub> is an unlimited interlock that has no maximum time value. t<sub>MLI</sub> is a limited time-out that has a defined minimum. t<sub>LI</sub> is a limited time-out that has a defined maximum.
- (2) 80-conductor cabling (see ATA specification :Annex A) shall be required in order to meet setup ( $t_{DS}$ ,  $t_{CS}$ ) and hold ( $t_{DH}$ ,  $t_{CH}$ ) times in modes greater than 2.
- (3) Timing for t<sub>DVS</sub>, t<sub>DVH</sub>, t<sub>CVS</sub> and t<sub>CVH</sub> shall be met for lumped capacitive loads of 15 and 40 pF at the connector where the Data and STROBE signals have the same capacitive load value. Due to reflections on the cable, these timing measurements are not valid in a normally functioning system.
- (4) For all timing modes the parameter  $t_{ZIORDY}$  may be greater than  $t_{ENV}$  due to the fact that the host has a pull-up on IORDY- giving it a known state when released.

#### **Ultra DMA Data Burst Timing Requirements**

| Nomo               | Mode 0                                                                                    |           | Mode 1      |            | Mode 2  |             | Mode 3     |          | Mode 4      |           |
|--------------------|-------------------------------------------------------------------------------------------|-----------|-------------|------------|---------|-------------|------------|----------|-------------|-----------|
| Name               | Min                                                                                       | Max       | Min         | Max        | Min     | Max         | Min        | Max      | Min         | Max       |
| t <sub>DSIC</sub>  | 14.7                                                                                      |           | 9.7         |            | 6.8     |             | 6.8        |          | 4.8         |           |
| t <sub>DHIC</sub>  | 4.8                                                                                       |           | 4.8         |            | 4.8     |             | 4.8        |          | 4.8         |           |
| t <sub>DVSIC</sub> | 72.9                                                                                      |           | 50.9        |            | 33.9    |             | 22.6       |          | 9.5         |           |
| t <sub>DVHIC</sub> | 9.0                                                                                       |           | 9.0         |            | 9.0     |             | 9.0        |          | 9.0         |           |
| t <sub>DSIC</sub>  | Recipient IC data setup time (from data valid until STROBE edge) (see note 2)             |           |             |            |         |             |            |          |             |           |
| t <sub>DHIC</sub>  | Recipient IC data hold time (from STROBE edge until data may become invalid) (see note 2) |           |             |            |         |             |            |          |             |           |
| t <sub>DVSIC</sub> | Sender IC data valid setup time (from data valid until STROBE edge) (see note 3)          |           |             |            |         |             |            |          |             |           |
| t <sub>DVHIC</sub> | Sender I                                                                                  | C data va | id hold tim | ne (from S | TROBE e | dge until d | lata may b | ecome in | valid) (see | e note 3) |

#### Notes:

- (1) All timing measurement switching points (low to high and high to low) shall be taken at 1.5 V.
- (2) The correct data value shall be captured by the recipient given input data with a slew rate of 0.4 V/ns rising and falling and the input STROBE with a slew rate of 0.4 V/ns rising and falling at t<sub>DSIC</sub> and t<sub>DHIC</sub> timing (as measured through 1.5 V).
- (3) The parameters t<sub>DVSIC</sub> and t<sub>DVHIC</sub> shall be met for lumped capacitive loads of 15 and 40 pF at the IC where all signals have the same capacitive load value. Noise that may couple onto the output signals from external sources has not been included in these values.

#### Ultra DMA AC Signal Requirements

| Name  | Comment                               | Min [V/ns] | Max [V/ns] | Notes |
|-------|---------------------------------------|------------|------------|-------|
| SRISE | Rising Edge Slew Rate for any signal  |            | 1.25       | 1     |
| SFALL | Falling Edge Slew Rate for any signal |            | 1.25       | 1     |

#### Notes:

(1) The sender shall be tested while driving an 18 inch long, 80 conductor cable with PVC insulation material. The signal under test shall be cut at a test point so that it has not trace, cable or recipient loading after the test point. All other signals should remain connected through to the recipient. The test point may be located at any point between the sender's series termination resistor and one half inch or less of conductor exiting the connector. If the test point is on a cable conductor rather than the PCB, an adjacent ground conductor shall also be cut within one half inch of the connector.
The test load and test points should then be soldered directly to the exposed source side connectors.

The test load and test points should then be soldered directly to the exposed source side connectors. The test loads consist of a 15 pF or a 40 pF, 5%, 0.08 inch by 0.05 inch surface mount or smaller size capacitor from the test point to ground. Slew rates shall be met for both capacitor values.

Measurements shall be taken at the test point using a <1 pF, >100 Kohm, 1 Ghz or faster probe and a 500 MHz or faster oscilloscope. The average rate shall be measured from 20% to 80% of the settled VOH level with data transitions at least 120 nsec apart. The settled VOH level shall be measured as the average output high level under the defined testing conditions from 100 nsec after 80% of a rising edge until 20% of the subsequent falling edge.

### **Ultra DMA Data-In Burst Initiation Timing**

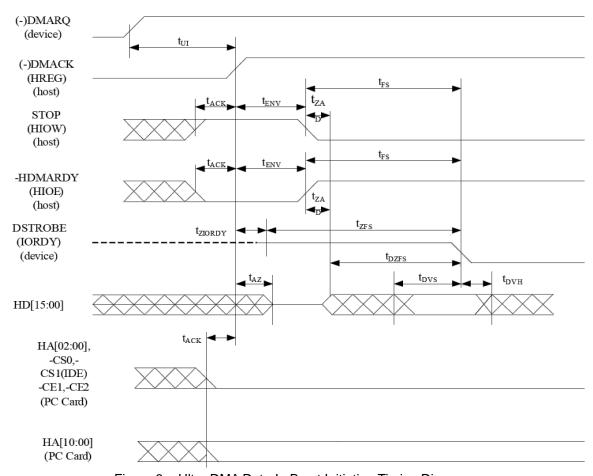



Figure 3 Ultra DMA Data-In Burst Initiation Timing Diagram

ALL WAVEFORMS IN THIS DIAGRAM ARE SHOWN WITH THE ASSERTED STATE HIGH. NEGATIVE TRUE SIGNALS APPEAR INVERTED ON THE BUS RELATIVE TO THE DIAGRAM.

#### Notes:

(1) The definitions for the IORDY:-DDMARDY:DSTROBE, -IORD:-HDMARDY:HSTROBE, and -IOWR:STOP signal lines are not in effect until DMARQ and -DMACK are asserted. HA[02:00], -CS0 & -CS1 are True IDE mode signal definitions. HA[10:00], -CE1 and -CE2 are PC Card mode signals. The Bus polarity of (-) DMACK and (-) DMARQ are dependent on interface mode active.

### **Sustained Ultra DMA Data-In Burst Timing**

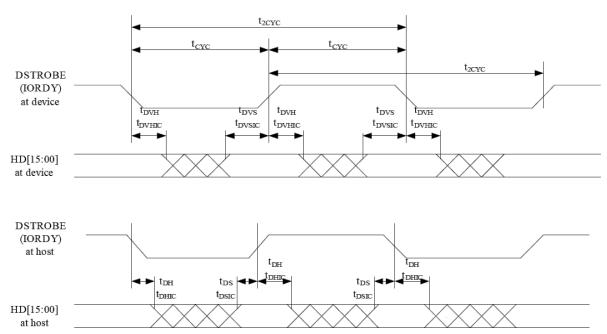



Figure 4 Sustained Ultra DMA Data-In Burst Timing Diagram

Notes: HD[15:00] and DSTROBE signals are shown at both the host and the device to emphasize that cable settling time as well as cable propagation delay shall not allow the data signals to be considered stable at the host until some time after they are driven by the device.

### **Ultra DMA Data-In Burst Host Pause Timing**

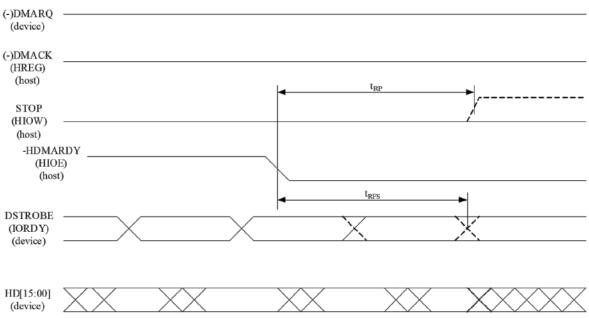



Figure 5 Ultra DMA Data-In Burst Host Pause Timing Diagram

ALL WAVEFORMS IN THIS DIAGRAM ARE SHOWN WITH THE ASSERTED STATE HIGH. NEGATIVE TRUE SIGNALS APPEAR INVERTED ON THE BUS RELATIVE TO THE DIAGRAM.

#### Notes:

- (1) The host may assert STOP to request termination of the Ultra DMA data burst no sooner than tRP after -HDMARDY is negated.
- (2) After negating -HDMARDY, the host may receive zero, one, two, or three more data words from the device.
- (3) The bus polarity of the (-) DMARQ and (-)DMACK signals is dependent on the active interface mode.

### **Ultra DMA Data-In Burst Device Termination Timing**

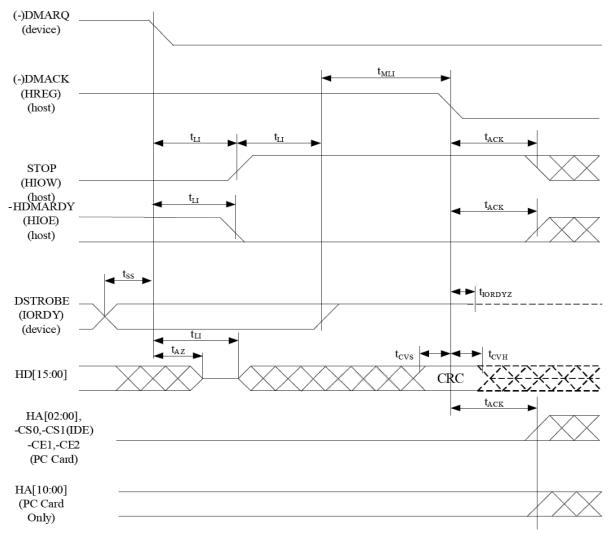



Figure 6 Ultra DMA Data-In Burst Device Termination Timing Diagram

ALL WAVEFORMS IN THIS DIAGRAM ARE SHOWN WITH THE ASSERTED STATE HIGH. NEGATIVE TRUE SIGNALS APPEAR INVERTED ON THE BUS RELATIVE TO THE DIAGRAM.

Notes: The definitions for the STOP, HDMARDY, and DSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated. HA[02:00], -CS0 & -CS1 are True IDE mode signal definitions. HA[10:00], -CE1 and -CE2 are PC Card mode signals. The bus polarity of DMARQ and DMACK are dependent on the active interface mode.

### **Ultra DMA Data-In Burst Host Termination Timing**

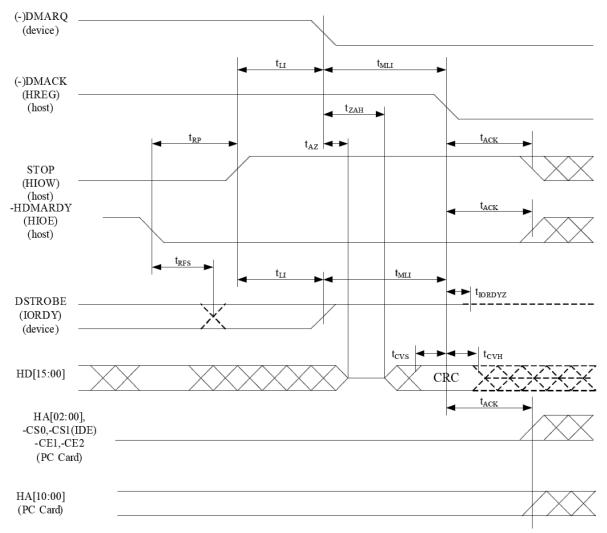



Figure 7 Ultra DMA Data-In Burst Host Termination Timing Diagram

ALL WAVEFORMS IN THIS DIAGRAM ARE SHOWN WITH THE ASSERTED STATE HIGH. NEGATIVE TRUE SIGNALS APPEAR INVERTED ON THE BUS RELATIVE TO THE DIAGRAM.

Notes: The definitions for the STOP, HDMARDY, and DSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated. HA [02:00], -CS0 & -CS1 are True IDE mode signal definitions. HA [10:00], -CE1 and -CE2 are PC Card mode signal definitions. The bus polarity of DMARQ and DMACK depend on the active interface mode.

### **Ultra DMA Data-Out Burst Initiation Timing**

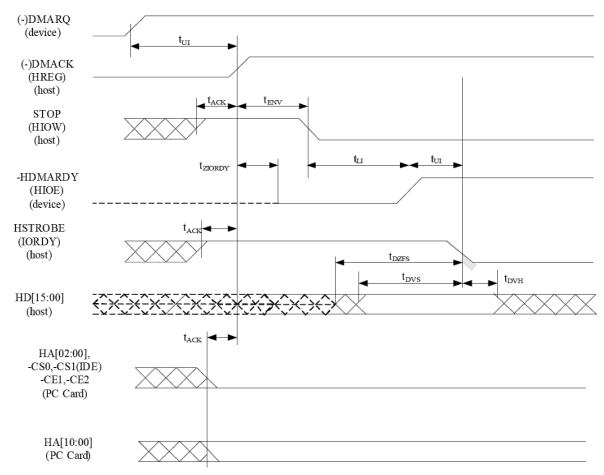



Figure 8 Ultra DMA Data-Out Burst Initiation Timing Diagram

ALL WAVEFORMS IN THIS DIAGRAM ARE SHOWN WITH THE ASSERTED STATE HIGH. NEGATIVE TRUE SIGNALS APPEAR INVERTED ON THE BUS RELATIVE TO THE DIAGRAM.

Notes: The definitions for the STOP, DDMARDY, and HSTROBE signal lines are not in effect until DMARQ and DMACK are asserted. HA [02:00], -CS0 & -CS1 are True IDE mode signal definitions. HA [10:00], -CE1 and -CE2 are PC Card mode signal definitions. The bus polarity of DMARQ and DMACK depend on the active interface mode.

### **Sustained Ultra DMA Data-Out Burst Timing**

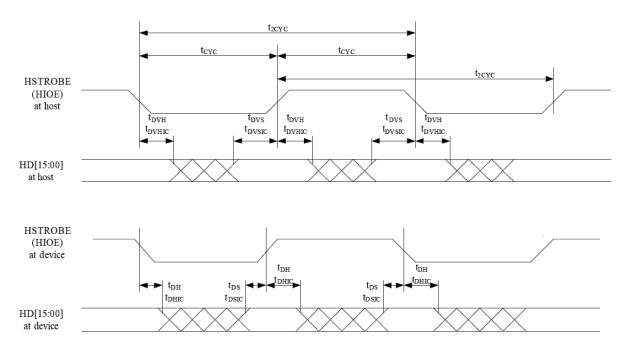



Figure 9 Sustained Ultra DMA Data-Out Burst Timing Diagram

Notes: Data (HD[15:00]) and HSTROBE signals are shown at both the device and the host to emphasize that cable settling time as well as cable propagation delay shall not allow the data signals to be considered stable at the device until sometime after they are driven by the host.

### **Ultra DMA Data-Out Burst Device Pause Timing**

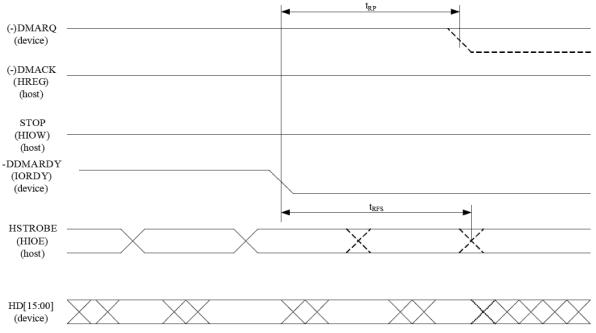



Figure 10 Ultra DMA Data-Out Burst Device Pause Timing Diagram

ALL WAVEFORMS IN THIS DIAGRAM ARE SHOWN WITH THE ASSERTED STATE HIGH. NEGATIVE TRUE SIGNALS APPEAR INVERTED ON THE BUS RELATIVE TO THE DIAGRAM.

#### Notes:

- (1) The device may negate DMARQ to request termination of the Ultra DMA data burst no sooner than  $t_{RP}$  after -DDMARDY is negated.
- (2) After negating -DDMARDY, the device may receive zero, one, two, or three more data words from the host.
- (3) The bus polarity of DMARQ and DMACK depend on the active interface mode.

### **Ultra DMA Data-Out Burst Device Termination Timing**

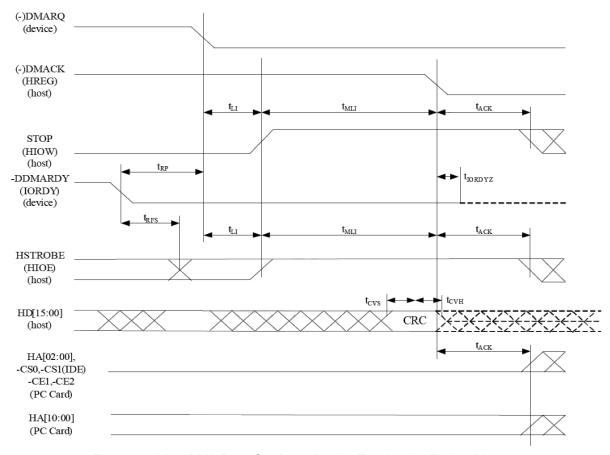



Figure 11 Ultra DMA Data-Out Burst Device Termination Timing Diagram

ALL WAVEFORMS IN THIS DIAGRAM ARE SHOWN WITH THE ASSERTED STATE HIGH. NEGATIVE TRUE SIGNALS APPEAR INVERTED ON THE BUS RELATIVE TO THE DIAGRAM.

#### Notes

The definitions for the STOP, DDMARDY, and HSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated. HA[00:02], -CS0 & -CS1 are True IDE mode signal definitions. HA[00:10], -CE1 and -CE2 are PC Card mode signals. The bus polarity of DMARQ and DMACK depend on the active interface mode.

### **Ultra DMA Data-Out Burst Host Termination Timing**

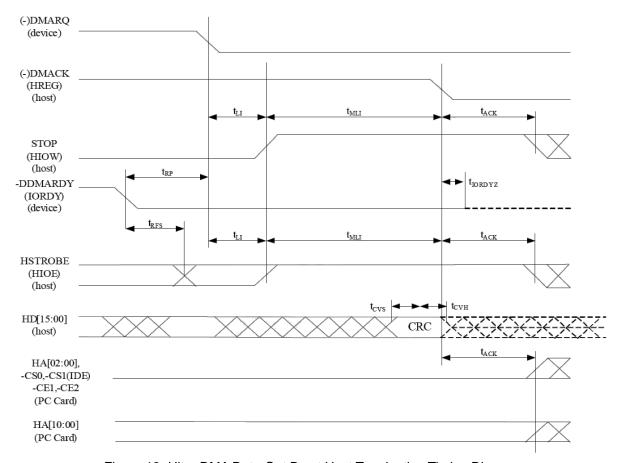



Figure 12 Ultra DMA Data-Out Burst Host Termination Timing Diagram

ALL WAVEFORMS IN THIS DIAGRAM ARE SHOWN WITH THE ASSERTED STATE HIGH. NEGATIVE TRUE SIGNALS APPEAR INVERTED ON THE BUS RELATIVE TO THE DIAGRAM.

#### Notes:

The definitions for the STOP, DDMARDY, and HSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated. HA[02:00], -CS0 & -CS1 are True IDE mode signal definitions. HA[10:00], -CE1 and -CE2 are PC Card mode signal definitions. The bus polarity of DMARQ and DMACK depend on the active interface mode.



## 6. Command Descriptions

6.1 Command Support

| Command                     | Code       | FR | SC | SN | CY | DH | LBA |
|-----------------------------|------------|----|----|----|----|----|-----|
| Check Power Mode            | E5 or 98h  | _  | _  | _  | _  | Υ  | _   |
| Execute Drive Diagnostic    | 90h        | _  | _  | _  | _  | Υ  | _   |
| Erase Sector                | C0h        | _  | Υ  | Υ  | Υ  | Υ  | Υ   |
| Format Track                | 50h        | _  | Υ  | _  | Υ  | Υ  | Υ   |
| Identify Device             | Ech        | _  | _  | _  | _  | Υ  | _   |
| Idle                        | E3h or 97h | _  | Υ  | _  | _  | Υ  | -   |
| Idle Immediate              | E1h or 95h | _  | _  | _  | _  | Υ  | _   |
| Initialize Drive Parameters | 91h        | _  | Υ  | -  | _  | Υ  | -   |
| NOP                         | 00h        | _  | _  | _  | _  | Υ  | -   |
| Read Buffer                 | E4h        | _  | _  | _  | _  | Υ  | _   |
| Read DMA                    | C8h        | _  | Υ  | Υ  | Υ  | Υ  | Υ   |
| Read Multiple               | C4h        | _  | Υ  | Υ  | Υ  | Υ  | Υ   |
| Read Sector(s)              | 20h or 21h | _  | Υ  | Υ  | Υ  | Υ  | Υ   |
| Read Verify Sector(s)       | 40h or 41h | _  | Υ  | Υ  | Υ  | Υ  | Υ   |
| Recalibrate                 | 1Xh        | _  | _  | -  | _  | Υ  | -   |
| Request Sense               | 03h        | _  | _  | _  | _  | Υ  | -   |
| Security Disable Password   | F6h        | _  | _  | -  | _  | Υ  | -   |
| Security Erase Prepare      | F3h        | _  | _  | _  | _  | Υ  | _   |
| Security Erase Unit         | F4h        | _  | _  | _  | _  | Υ  | _   |
| Security Freeze Lock        | F5h        | _  | _  | -  | _  | Υ  | _   |
| Security Set Password       | F1h        | _  | _  | -  | _  | Υ  | -   |
| Security Unlock             | F2h        | _  | _  | -  | _  | Υ  | _   |
| Seek                        | 7Xh        | _  | _  | Υ  | Υ  | Υ  | Υ   |
| Set Feature                 | EFh        | Υ  | _  | _  | _  | Υ  | -   |
| Set Multiple Mode           | C6h        | _  | Υ  | -  | _  | Υ  | _   |
| Set Sleep Mode              | E6h or 99h | _  | _  | _  | _  | Υ  | _   |
| Standby                     | E2 or 96h  | _  | _  | -  | _  | Υ  | _   |
| Standby Immediate           | E0 or 94h  | _  | _  | _  | _  | Υ  | _   |
| Translate Sector            | 87h        | _  | Υ  | Υ  | Υ  | Υ  | Υ   |
| Wear Level                  | F5h        | _  | _  | _  | _  | Υ  | -   |
| Write Buffer                | E8h        | _  | _  | _  | _  | Υ  | _   |
| Write DMA                   | CAh        | _  | Υ  | Υ  | Υ  | Υ  | Υ   |
| Write Multiple              | C5h        | _  | Υ  | Υ  | Υ  | Υ  | Υ   |
| Write Multiple w/o Erase    | CDh        | _  | Υ  | Υ  | Υ  | Υ  | Υ   |
| Write Sector(s)             | 30h or 31h | _  | Υ  | Υ  | Υ  | Υ  | Υ   |
| Write Sector(s) w/o Erase   | 38h        | _  | Υ  | Υ  | Υ  | Υ  | Υ   |
| Write Verify                | 3Ch        | _  | Υ  | Υ  | Υ  | Υ  | Υ   |

1. FR: Feature Register

SC: Sector Count register

SN: Sector Number register
CY: Cylinder Low/High register

DR: Drive bit of Drive/Head register

HD: Head No. (bit0-bit3) of Drive/Head register LBA: Logical Block Address Mode Supported.

2. Y: Set up

─: Not set up

### 6.2 SMART Command Support

ÔÚÙÖ series supports SMART command set and define some vendor specific data to report spare/bad block number in each memory management unit. Users can get the data by "Read Data" command.

| SMART Feature Register Values |                          |     |                            |  |  |  |
|-------------------------------|--------------------------|-----|----------------------------|--|--|--|
| D0h                           | Read Data                | D4h | Execute OFF-LINE Immediate |  |  |  |
| D1h                           | Read Attribute Threshold | D8h | Enable SMART Operations    |  |  |  |
| D2h                           | Enable/Disable Autosave  | D9h | Disable SMART Operations   |  |  |  |
| D3h                           | Save Attribute Values    | DAh | Return Status              |  |  |  |

Notes: If reserved size below the Threshold, the status can be read from Cylinder register by Return Status command (DAh).

### SMART Data Structure (READ DATA (D0h))

| BYTE      | F/V | Decription                                                          |  |  |
|-----------|-----|---------------------------------------------------------------------|--|--|
| 0-1       | Χ   | Revision code                                                       |  |  |
| 2-361     | Χ   | Vendor specific                                                     |  |  |
| 362       | V   | Off line data collection status                                     |  |  |
| 363       | Χ   | Self-test execution status byte                                     |  |  |
| 364-365   | V   | Total time in seconds to complete off-line data collection activity |  |  |
| 366       | Χ   | Vendor specific                                                     |  |  |
| 367       | F   | Off-line data collection capability                                 |  |  |
| 368-369   | F   | SMART capability                                                    |  |  |
|           |     | Error logging capability                                            |  |  |
| 370       | F   | 7-1 Reserved                                                        |  |  |
|           |     | 0 1=Device error logging supported                                  |  |  |
| 371       | X   | Vendor specific                                                     |  |  |
| 372       | F   | Short self-test routine recommended polling time (in minutes)       |  |  |
| 373       | F   | Extended self-test routine recommended polling time (in minutes)    |  |  |
| 374       | F   | Conveyance self-test routine recommended polling time (in minutes)  |  |  |
| 375-385   | R   | Reserved                                                            |  |  |
| 386-395   | F   | Firmware Version/Date Code                                          |  |  |
| 396       | V   | Number of MU in device (0~n)                                        |  |  |
| 397+(n*6) | V   | MU number                                                           |  |  |
| 398+(n*6) | V   | MU data block                                                       |  |  |
| 400+(n*6) | V   | MU spare block                                                      |  |  |
| 401+(n*6) | V   | Init. Bad block                                                     |  |  |
| 402+(n*6) | V   | Run time Bad block information                                      |  |  |
| 511       | V   | Data structure checksum                                             |  |  |

#### Notes:

F = the content of the byte is fixed and does not change.

V = the content of the byte is variable and may change depending on the state of the device or the commands executed by the device.

X = the content of the byte is vendor specific and may be fixed or variable.

R = the content of the byte is reserved and shall be zero.

N = Nth Management Unit

\* 4 Byte value : [MSB] [2] [1] [LSB]



## 6.3 ID Table Information

| Word    | Default | Total | Data Field Type information                                          |  |
|---------|---------|-------|----------------------------------------------------------------------|--|
| Address | value   | Bytes |                                                                      |  |
| 0       | 044Ah   | 2     | General configuration                                                |  |
| 1       | XXXXh   | 2     | Default number of cylinders                                          |  |
| 2       | 0000h   | 2     | Reserved                                                             |  |
| 3       | 00XXh   | 2     | Default number of heads                                              |  |
| 4       | 0000h   | 2     | Obsolete                                                             |  |
| 5       | 0240h   | 2     | Obsolete                                                             |  |
| 6       | XXXXh   | 2     | Default number of sectors per track                                  |  |
| 7-8     | XXXXh   | 4     | Number of sectors per card (Word 7 = MSW, Word 8 = LSW)              |  |
| 9       | 0000h   | 2     | Obsolete                                                             |  |
| 10-19   | XXXXh   | 20    | Serial number in ASCII (Right Justified)                             |  |
| 20      | 0002h   | 2     | Obsolete                                                             |  |
| 21      | 0002h   | 2     | Obsolete                                                             |  |
| 22      | 0004h   | 2     | Number of ECC bytes passed on Read/Write Long Commands               |  |
| 23-26   | XXXXh   | 8     | Firmware revision in ASCII. Big Endean Byte Order in Word            |  |
| 27-46   | XXXXh   | 40    | Model number in ASCII (Left Justified) Big Endean Byte Order in Word |  |
| 47      | 8001h   | 2     | Maximum number of sectors on Read/Write Multiple command             |  |
| 48      | 0000h   | 2     | Reserved                                                             |  |
| 49      | 0300h   | 2     | Capabilities                                                         |  |
| 50      | 0000h   | 2     | Reserved                                                             |  |
| 51      | 0200h   | 2     | PIO data transfer cycle timing mode                                  |  |
| 52      | 0200h   | 2     | Obsolete                                                             |  |
| 53      | 0000h   | 2     | Field validity                                                       |  |
| 54      | XXXXh   | 2     | y .                                                                  |  |
| 55      |         | 2     | Current numbers of cylinders                                         |  |
| 56      | XXXXh   | 2     | Current numbers of heads                                             |  |
|         | XXXXh   |       | Current sectors per track                                            |  |
| 57-58   | XXXXh   | 4     | Current capacity in sectors (LBAs)(Word57=LSW, Word58=MSW)           |  |
| 59      | 0101h   | 2     | Multiple sector setting                                              |  |
| 60-61   | XXXXh   | 4     | Total number of sectors addressable in LBA Mode                      |  |
| 62      | 0000h   | 2     | Reserved                                                             |  |
| 63      | 0407h   | 2     | Multiword DMA transfer. In PCMCIA mode this value shall be oh        |  |
| 64      | 0003h   | 2     | Advanced PIO modes supported                                         |  |
| 65      | 0078h   | 2     | Minimum Multiword DMA transfer cycle time per word.                  |  |
| 66      | 0078h   | 2     | Recommended Multiword DMA transfer cycle time.                       |  |
| 67      | 0078h   | 2     | Minimum PIO transfer cycle time without flow control                 |  |
| 68      | 0078h   | 2     | Minimum PIO transfer cycle time with IORDY flow control              |  |
| 69-79   | 0000h   | 20    | Reserved                                                             |  |
| 80      | 0010h   | 2     | Major version number                                                 |  |
| 81      | 0000h   | 2     | Minor version number                                                 |  |
| 82      | 7008h   | 2     | Command sets supported 0                                             |  |
| 83      | 400Ch   | 2     | Command sets supported 1                                             |  |
| 84      | 4002h   | 2     | Command sets supported 2                                             |  |
| 85      | 0001h   | 2     | Command sets Enable 0                                                |  |
| 86      | 0000h   | 2     | Command sets Enable 1                                                |  |
| 87      | 0002h   | 2     | Command sets Enable 2                                                |  |
| 88      | 001Fh   | 2     | True IDE Ultra DMA Mode Supported and Selected (UDMA0~4)             |  |
| 89      | 0000h   | 2     | Time required for Security erase unit completion                     |  |



## CPI Technologies, Inc.

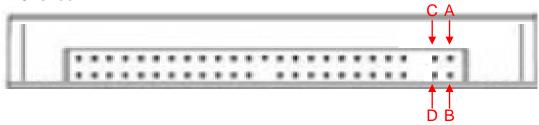
| 00      | 00006  | _   | Time very just for Enhanced accounts areas unit completion |  |
|---------|--------|-----|------------------------------------------------------------|--|
| 90      | 0000h  | 2   | Time required for Enhanced security erase unit completion  |  |
| 91      | 0000h  | 2   | Current Advanced power manage mentvalue                    |  |
| 92-127  | 0000h  | 72  | Reserved                                                   |  |
| 128     | 0000h  | 2   | Security status                                            |  |
| 129-159 | 0000h  | 64  | vendor unique bytes                                        |  |
| 160     | 81F4h  | 2   | Power requirement description                              |  |
| 161     | 0000h  | 2   | Reserved for assignment by the CFA                         |  |
| 162     | 0000h  | 2   | Key management schemes supported                           |  |
| 163     | 0492h  | 2   | CF Advanced True IDE Timing Mode Capability and Setting    |  |
| 164     | 001Bh  | 2   | CF Advanced PCMCIA I/O and Memory Timing Mode Capability   |  |
| 104     | 001611 | 2   | and set                                                    |  |
| 165-175 | 0000h  | 22  | 80ns cycle in memory and IO mode                           |  |
| 176-255 | 0000h  | 140 | Reserved for assignment by the CFA                         |  |

#### Notes:

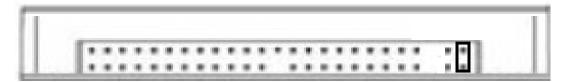
Word 1: Default number of cylinders .

Word 3: Default number of heads .

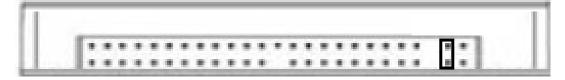
Word 6: Default number of sectors per track .


Word 10~19: Serial number in ASCII.
Word 23~26: Firmware revision in ASCII.
Word 27~26: Model number in ASCII




### 7. Hardware Function

## 7.1 Master/Slave Setup


#### 1. Overlook



#### 2. Master Mode



#### 3. Slave Mode





# 8. Ordering Information

| Capacity | Ordering Code     |
|----------|-------------------|
| 1GB      | CPSD-25SI001GSIFU |
| 2GB      | CPSD-25SI002GSIFU |
| 4GB      | CPSD-25SI004GSIFU |
| 8GB      | CPSD-25SI008GSIFU |
| 16GB     | CPSD-25SI016GSIFU |
| 32GB     | CPSD-25SI032GSIFU |
| 64GB     | CPSD-25SI064GSIFU |



## 9. Product Number Decoder

### $X_1X_2X_3X_4$ - $X_5X_6X_7X_8X_9X_{10}X_{11}X_{12}X_{13}$ - $X_{14}X_{15}X_{16}$

| Position                      | Description        | Options | Memo                    |
|-------------------------------|--------------------|---------|-------------------------|
| $X_1X_2X_3X_4$                | Product Name       | CPSD    | No other option         |
| X <sub>5</sub> X <sub>6</sub> | Form Factor        | 25      | 2.5inch No other option |
| X <sub>7</sub> X <sub>8</sub> | Product Type       | SI      | No other option         |
|                               |                    | 001G    | 1GB                     |
|                               |                    | 002G    | 2GB                     |
|                               |                    | 004G    | 4GB                     |
| $X_9X_{10}X_{11}X_{12}$       | Capacity           | 008G    | 8GB                     |
|                               |                    | 016G    | 16GB                    |
|                               |                    | 032G    | 32GB                    |
|                               |                    | 064G    | 64GB                    |
| V                             | Floob Marson, Type | S       | SLC Flash Memory        |
| X <sub>13</sub>               | Flash Memory Type  | М       | MLC Flash Memory *1     |
| V                             | 私/// 中安田           | С       | 0°C∼+70°C <sup>*1</sup> |
| X <sub>14</sub>               | 動作温度範囲             | 1       | -40°C∼+85°C             |
| V                             | DISK モード           | F       | Fixed Disk モード          |
| X <sub>15</sub>               |                    | R       | Removable Disk モード*1    |
| V                             | 転送モード              | Р       | PIO モード <sup>*1</sup>   |
| X <sub>16</sub>               |                    | U       | UDMA モード 0-6            |

#### Note)

\* 1 : Consult CPI sales (sales@cpi-tec.com or 045-331-9201).